3.4.9 \(\int \frac {1}{\sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^{3/2}} \, dx\) [309]

Optimal. Leaf size=76 \[ -\frac {2 \sqrt {e \cos (c+d x)}}{5 d e (a+a \sin (c+d x))^{3/2}}-\frac {4 \sqrt {e \cos (c+d x)}}{5 a d e \sqrt {a+a \sin (c+d x)}} \]

[Out]

-2/5*(e*cos(d*x+c))^(1/2)/d/e/(a+a*sin(d*x+c))^(3/2)-4/5*(e*cos(d*x+c))^(1/2)/a/d/e/(a+a*sin(d*x+c))^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 76, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.074, Rules used = {2751, 2750} \begin {gather*} -\frac {4 \sqrt {e \cos (c+d x)}}{5 a d e \sqrt {a \sin (c+d x)+a}}-\frac {2 \sqrt {e \cos (c+d x)}}{5 d e (a \sin (c+d x)+a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x])^(3/2)),x]

[Out]

(-2*Sqrt[e*Cos[c + d*x]])/(5*d*e*(a + a*Sin[c + d*x])^(3/2)) - (4*Sqrt[e*Cos[c + d*x]])/(5*a*d*e*Sqrt[a + a*Si
n[c + d*x]])

Rule 2750

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*m)), x] /; FreeQ[{a, b, e, f, g, m, p}, x] && EqQ[a^2 - b^
2, 0] && EqQ[Simplify[m + p + 1], 0] &&  !ILtQ[p, 0]

Rule 2751

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[b*(g*C
os[e + f*x])^(p + 1)*((a + b*Sin[e + f*x])^m/(a*f*g*Simplify[2*m + p + 1])), x] + Dist[Simplify[m + p + 1]/(a*
Simplify[2*m + p + 1]), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, f, g, m
, p}, x] && EqQ[a^2 - b^2, 0] && ILtQ[Simplify[m + p + 1], 0] && NeQ[2*m + p + 1, 0] &&  !IGtQ[m, 0]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {e \cos (c+d x)} (a+a \sin (c+d x))^{3/2}} \, dx &=-\frac {2 \sqrt {e \cos (c+d x)}}{5 d e (a+a \sin (c+d x))^{3/2}}+\frac {2 \int \frac {1}{\sqrt {e \cos (c+d x)} \sqrt {a+a \sin (c+d x)}} \, dx}{5 a}\\ &=-\frac {2 \sqrt {e \cos (c+d x)}}{5 d e (a+a \sin (c+d x))^{3/2}}-\frac {4 \sqrt {e \cos (c+d x)}}{5 a d e \sqrt {a+a \sin (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.11, size = 59, normalized size = 0.78 \begin {gather*} -\frac {2 \sqrt {e \cos (c+d x)} \sqrt {a (1+\sin (c+d x))} (3+2 \sin (c+d x))}{5 a^2 d e (1+\sin (c+d x))^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[e*Cos[c + d*x]]*(a + a*Sin[c + d*x])^(3/2)),x]

[Out]

(-2*Sqrt[e*Cos[c + d*x]]*Sqrt[a*(1 + Sin[c + d*x])]*(3 + 2*Sin[c + d*x]))/(5*a^2*d*e*(1 + Sin[c + d*x])^2)

________________________________________________________________________________________

Maple [A]
time = 0.14, size = 44, normalized size = 0.58

method result size
default \(-\frac {2 \left (2 \sin \left (d x +c \right )+3\right ) \cos \left (d x +c \right )}{5 d \left (a \left (1+\sin \left (d x +c \right )\right )\right )^{\frac {3}{2}} \sqrt {e \cos \left (d x +c \right )}}\) \(44\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+a*sin(d*x+c))^(3/2)/(e*cos(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2/5/d*(2*sin(d*x+c)+3)*cos(d*x+c)/(a*(1+sin(d*x+c)))^(3/2)/(e*cos(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [B] Leaf count of result is larger than twice the leaf count of optimal. 197 vs. \(2 (58) = 116\).
time = 0.56, size = 197, normalized size = 2.59 \begin {gather*} -\frac {2 \, {\left (3 \, \sqrt {a} + \frac {4 \, \sqrt {a} \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} - \frac {4 \, \sqrt {a} \sin \left (d x + c\right )^{3}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{3}} - \frac {3 \, \sqrt {a} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}\right )} {\left (\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + 1\right )}^{2} e^{\left (-\frac {1}{2}\right )}}{5 \, {\left (a^{2} + \frac {2 \, a^{2} \sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} + \frac {a^{2} \sin \left (d x + c\right )^{4}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{4}}\right )} d {\left (\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1\right )}^{\frac {7}{2}} \sqrt {-\frac {\sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + 1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(d*x+c))^(3/2)/(e*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-2/5*(3*sqrt(a) + 4*sqrt(a)*sin(d*x + c)/(cos(d*x + c) + 1) - 4*sqrt(a)*sin(d*x + c)^3/(cos(d*x + c) + 1)^3 -
3*sqrt(a)*sin(d*x + c)^4/(cos(d*x + c) + 1)^4)*(sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + 1)^2*e^(-1/2)/((a^2 + 2*
a^2*sin(d*x + c)^2/(cos(d*x + c) + 1)^2 + a^2*sin(d*x + c)^4/(cos(d*x + c) + 1)^4)*d*(sin(d*x + c)/(cos(d*x +
c) + 1) + 1)^(7/2)*sqrt(-sin(d*x + c)/(cos(d*x + c) + 1) + 1))

________________________________________________________________________________________

Fricas [A]
time = 0.35, size = 72, normalized size = 0.95 \begin {gather*} \frac {2 \, \sqrt {a \sin \left (d x + c\right ) + a} {\left (2 \, \sin \left (d x + c\right ) + 3\right )} \sqrt {\cos \left (d x + c\right )}}{5 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} e^{\frac {1}{2}} - 2 \, a^{2} d e^{\frac {1}{2}} \sin \left (d x + c\right ) - 2 \, a^{2} d e^{\frac {1}{2}}\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(d*x+c))^(3/2)/(e*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

2/5*sqrt(a*sin(d*x + c) + a)*(2*sin(d*x + c) + 3)*sqrt(cos(d*x + c))/(a^2*d*cos(d*x + c)^2*e^(1/2) - 2*a^2*d*e
^(1/2)*sin(d*x + c) - 2*a^2*d*e^(1/2))

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\left (a \left (\sin {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}} \sqrt {e \cos {\left (c + d x \right )}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(d*x+c))**(3/2)/(e*cos(d*x+c))**(1/2),x)

[Out]

Integral(1/((a*(sin(c + d*x) + 1))**(3/2)*sqrt(e*cos(c + d*x))), x)

________________________________________________________________________________________

Giac [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*sin(d*x+c))^(3/2)/(e*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

Mupad [B]
time = 6.38, size = 95, normalized size = 1.25 \begin {gather*} -\frac {4\,\sqrt {a\,\left (\sin \left (c+d\,x\right )+1\right )}\,\left (7\,\cos \left (c+d\,x\right )-\cos \left (3\,c+3\,d\,x\right )+5\,\sin \left (2\,c+2\,d\,x\right )\right )}{5\,a^2\,d\,\sqrt {e\,\cos \left (c+d\,x\right )}\,\left (15\,\sin \left (c+d\,x\right )-6\,\cos \left (2\,c+2\,d\,x\right )-\sin \left (3\,c+3\,d\,x\right )+10\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((e*cos(c + d*x))^(1/2)*(a + a*sin(c + d*x))^(3/2)),x)

[Out]

-(4*(a*(sin(c + d*x) + 1))^(1/2)*(7*cos(c + d*x) - cos(3*c + 3*d*x) + 5*sin(2*c + 2*d*x)))/(5*a^2*d*(e*cos(c +
 d*x))^(1/2)*(15*sin(c + d*x) - 6*cos(2*c + 2*d*x) - sin(3*c + 3*d*x) + 10))

________________________________________________________________________________________